

PAPER-1(B.E./B. TECH.)

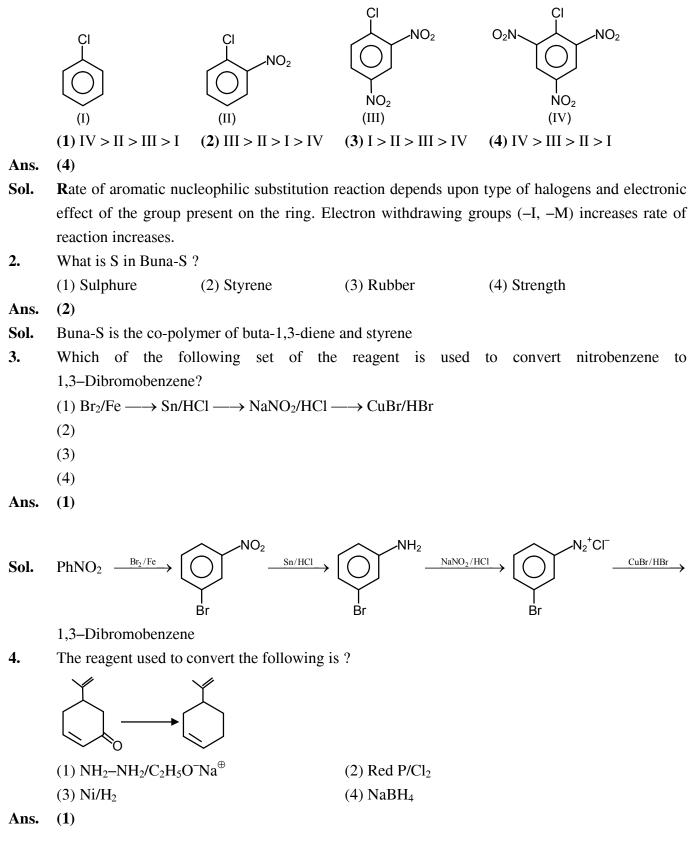
JEE (Main) 2021

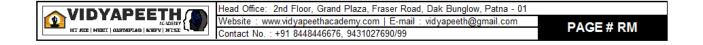
Questions & solutions

(Reproduced from memory retention)

Date : 24 February, 2021 (SHIFT-2) Time ; (3.00 pm to 6.00 pm)

Duration : 3 Hours | Max. Marks : 300


SUBJECT : CHEMISTRY


216, 2nd Floor, Grand Plaza, Fraser Road, Dakbonglow, Patna 01 Phone. : + 91-8448446676 | Website : www.vidyapeethacademy.com


CHEMISTRY

1. Compare the rate of aromatic nucleophilic substitution reaction of the following compounds

5. Match the following

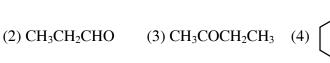
- Column I
- (a) Valium
- (b) Morphine
- (c) Norethindrone
- (d) Vitamin B-12

(q) Analgesic

Column – II

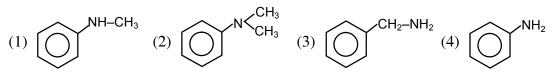
(r) Tranquilizer

(p) Pernicious anaemia


- (s) Antifertility
- **Ans.** $a \rightarrow r$; $b \rightarrow q$; $c \rightarrow s$; $d \rightarrow p$
- 6. Statement I : BOD is the parameter that can be helpful for survival of aquatic life.
 Statement II : Optimum value of BOD is 6.5 ppm.
 - (1) Statement I is true ,Statement II is false
 - (2) Statement I is false ,Statement II is true
 - (3) Statement I, II both are true
 - (4) Statement I, II both are false
- **Ans.** (1)
- 7. How many of the following amines can be prepared by Gabriel phthalimide synthesis ?

(i)
$$O$$
 CH_2-NH_2
(ii) O NH_2
(iii) CH_3-NH_2
(iv) $CH_3-CH_2-NH_2$

Ans. (3)


- Sol. Only aliphatic amines can be prepared by Gabriel phthalimide synthesis.
- 8. Which of the following compound cannot be prepared by the reaction of alkyne with $HgSO_4/dil.H_2SO_4$?

$$(1)$$
 CH₃CHO

Ans. (2)

9. Diazonium salt of which of the following will give coloured dye on reaction with β-Napthol in NaOH

Ans. (4)

Sol. Only aromatic Primary amines will gives Dye test.

- **10.** The correct bond angle & shape of I_3^- is
 - (1) Linear & 180°
 - (3) V-shape & 120°

- (2) Trigonal pyramidal & 120°
- (4) T-shape & 109° 28'

Ans. (1)

Linear shape $\angle I - I - I = 180^{\circ}$

11. Correct statements

(a) K.E.
$$\propto \frac{z^2}{n^2}$$

- (b) (nv) $\propto z^2$
- (c) Frequency $\propto \frac{z^3}{n^3}$
- (d) Electrostatic force $\propto \frac{z^3}{z^4}$
- (1) a & d are correct (2) a & b are correct
- (3) b & c are correct (4) b & d are correct

Ans. (1)

- **12.** Which of the following is incorrect?
 - (1) Cr₂O₃ is Amphoteric
 (3) VOSO₄ is reducing agent
- (2) RuO₄ is oxidising agent
 (4) Ruby appears due to presence of Co³⁺

(4) LiF < LiCl, NaCl > MgO

Ans. (4)

- **13.** Which of the following order of melting point is correct
 - (1) LiF > LiC1, NaCl > MgO (2) LiF < LiCl, NaCl > MgO
 - (3) LiF > LiCl, NaCl < MgO
- Ans. (3)

Sol. Lattice energy
$$\propto |Z^+||Z^-|$$

$$\propto \frac{1}{r^+ + r^-}$$

LiF

 $F^- < Cl^-$

Size

LiF > LiCl

LiCl

[charge are same]

Lattice energy

Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01 Website : www.vidyapeethacademy.com | E-mail : vidyapeeth@gmail.com Contact No. : +91 8448446676, 9431027690/99

$NaCl \longrightarrow Na^{\oplus} + Cl^{-}$	$ Z^+ Z^- = 1 \times 1 = 1$	
$MgO \longrightarrow Mg^{+2} + O^{-2}$	2 -2 =4	
Lattice energy MgO > NaCl		
Charge dominate over size		
Spin only magnetic moment of the following complexes		
$[\text{FeCl}_4]^{2^-}, [\text{CO}(\text{ox})_3]^{3^-}, \text{MnO}_4^{2^-}$		
(1) 4.9, 0, 1.76 BM	(2) 5.9, 1.73 BM	
(2) 1 72 2 92 0 DM		

(3) 1.73, 2.83, 0 BM (4) 2.83, 6.9, 0 BM

Ans. (1)

14.

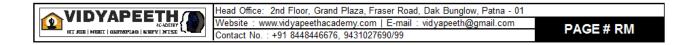
Sol. $[\text{FeCl}_4]^{2^-}$ Contain Fe⁺² in tetrahedral complex. Its configuration is $e_g^{2,1} t_{2g}^{-1,1,1}$ it have 4 unpaired electron in $[\text{Co}(\text{ox})_3]^{3^-}$ Co⁺³ have configuration $t_{2y}^{-2,2,2}eg^{0,0}$ MnO₄²⁻ have Mn in +6 oxidation state and configuration of Mn is $e_g^{-1,0} t_{2g}^{-0,0,0}$

- **15.** α -sulphur, β -Sulphur, $S_2 \rightarrow$ find how many are paramagnetic
- Ans. (1)
- Sol. In S₂, like O₂ two unpaired electron are present, $\alpha \& \beta$ sulphur have S₈ ring which are diamagnetic
- **16.** Which of the following can be used for clotting of blood efficiently?

(1) NaHCO₃ (2) FeCl₃ (3) FeSO₄ (4) Mg(HCO₃)₂

- Ans. (2)
- **Sol.** Blood is a negative charged Sol. Therefore according hardy-Schulz rule Fe^{+3} cation have highest coagulation power. Therefore FeCl₃ can be used for clotting of blood efficiently.

17.
$$3C_2H_2 \Longrightarrow C_6H_6(\ell)$$


given that

 G_{m}° (C₂H₂) = 2.4 × 10⁵J

 $G_{\rm m}^{\circ}({
m C}_{6}{
m H}_{6}) = -1.4 \times 10^{5}{
m J}$

Find $\log_{10} k$ at 25°C

Ans. (150.72)

 $\Delta G^{\circ} = \left(G_{M}^{\circ} \right)_{C_{\circ}H_{\circ}} - 3 \left(G_{M}^{\circ} \right)_{C_{\circ}H_{\circ}}$ Sol. $= -1.4 \times 10^{5} - 3 \times 2.4 \times 10^{5}$ $= -8.6 \times 10^{5}$ Joule -2.303RT log₁₀ k = -8.6×10^5 $-2.303 \times 8.314 \times 298 \log_{10} k = -8.6 \times 10^{5}$ $\log_{10} k = 150.72$ 1.86 gm of aniline is converted into acetanilide with 90% efficiency. Mass of acetanilide formed 18. is [X] $\times 10^{-2}$ gm 243×10^{-2} Ans. $Ph - NH_2 \xrightarrow{Ac_2O \text{ or } CH_3COCI, Pyridine} Ph - NH - C - CH_3$ Sol. (C_6H_7N) Acetanilide (C₈H₉NO) 1.86 g Molar mass = 93Molar mass = 13593 g aniline produces 135 g acetanilide * 1.86 g aniline produces $\frac{135 \times 1.86}{93} = 2.70 \text{ g}$ * At 90% efficiency of reaction it produces = $\frac{2.70 \times 90}{100}$ = 2.43 g Ans. 243×10^{-2} 19. Freezing point of C₆H₆ (ℓ) is 5.5°C. If 10g of C₄H₁₀ is mixed with 200g of C₆H₆ (ℓ). Calculate freezing point of solution $k_f = 5.12^{\circ}$ C/m. (1.09°C) Ans. $\Delta T_f = k_f \times m$ Sol. $= 5.12 \times \frac{10}{58} \times \frac{1000}{200} = 4.41^{\circ}C$ $\Delta T_{\rm F} = (T_{\rm F})_{\rm Solvent} - (T_{\rm F_{\rm I}})_{\rm Solution}$ $4.41^{\circ}C = 5.5 - \left(T_{F_{I}}\right)_{Solution}$ $(T_{F_1})_{Solution} = 5.5 - 4.41 = 1.09^{\circ}C$

Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01 Website : www.vidyapeethacademy.com | E-mail : vidyapeeth@gmail.com Contact No. : +91 8448446676, 9431027690/99

PAGE # RM

20. De-broglie's wavelength of a proton and an α -particle is same. Calculate ratio of their velocities

- **Ans.** (4)
- **Sol.** $\lambda_p = \lambda_\alpha$

$$\frac{h}{m_p v_p} = \frac{h}{m_\alpha v_\alpha}$$

$$\frac{v_p}{v_\alpha} = \frac{m_\alpha}{m_p} \qquad \qquad \because m_\alpha = 4 m_p$$

$$\frac{v_p}{v_\alpha} = \frac{4m_p}{m_p} = 4$$

Ans. 4

21. If $[H^+]$ changed from 1M to 10^{-4} M

Find change in electrode potential $E^{\circ}_{MnO_{4}^{-}/Mn^{+2}}$, $\left(\frac{RT}{F} = 0.059\right)$

$$[\text{Assume } [\text{MnO}_4^-] = [\text{Mn}^{+2}] = 1\text{M}]$$

Sol.
$$5e^- + 8H^+ + MnO_4^- \longrightarrow Mn^{+2} + 4H_2O$$

$$E_{1} = E^{\circ} - \frac{0.59}{5} \log_{10} \left[\frac{1}{[H^{+}]^{8}} \times \frac{[Mn^{+2}]}{[MnO_{4}^{-}]} \right]$$
$$= E^{\circ} - \frac{0.059}{5} \log_{10} \left[\frac{1}{(1)^{8}} \right] = E^{\circ}$$
$$E_{2} = E^{\circ} - \frac{0.059}{5} \log_{10} \left[\frac{1}{(10^{-4})^{8}} \times \frac{[Mn^{+2}]}{[MnO_{4}^{-}]} \right]$$
$$= E^{\circ} - \frac{0.059}{5} \log_{10} \left[10^{32} \right]$$
$$= E^{\circ} - \frac{0.059}{5} \times 32$$
$$E_{1} - E_{2} = E^{\circ} - E^{\circ} + \frac{0.059}{5} \times 32$$
$$= 0.3776 \text{ V}$$

	Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01 Website : www.vidyapeethacademy.com E-mail : vidyapeeth@gmail.com Contact No. : +91 8448446676, 9431027690/99
	Website : www.vidyapeethacademy.com E-mail : vidyapeeth@gmail.com
3 NEET OLYMPIAD MUPY NTSE	Contact No. : +91 8448446676, 9431027690/99

22. V ml of a hydrocarbon C_xH_y requires 6V ml of oxygen for complete combustion & forms 4V ml of CO₂. Determine y

4V

6V

Sol.
$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \longrightarrow X CO_2\left(\frac{y}{2}\right)H_2O\left(\ell\right)$$

Volume-Volume V

Analysis

VIDYAPEET

$$\frac{V_{C_xH_y}}{1} = \frac{V_{CO_2}}{x}$$

$$\frac{v}{1} = \frac{4v}{x} \qquad x = 4$$

$$\frac{v_{C_xH_y}}{1} = \frac{V_{O_2}}{x + \frac{y}{4}}$$

$$\frac{V}{1} - \frac{6V}{x + \frac{y}{4}}$$

$$x + \frac{y}{4} = 6$$

$$4 + \frac{y}{4} = 6$$

$$\frac{y}{4} = 2$$

$$y = 8$$
Formula C₄H₈
Sucrose $\xrightarrow{I \text{ order}}$ Glucose + Fructose t_{1/2} = 3.33 hour

f = fraction remaining of sucrose at 9 hour.

Find out value of $100 \times \log\left(\frac{1}{f}\right)$

 $[\log_{10} 2 = 0.3]$

Ans. (81)

23.

Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01 Website : www.vidyapeethacademy.com | E-mail : vidyapeeth@gmail.com Contact No. : +91 8448446676, 9431027690/99

Sol.
$$f = \frac{1}{2^n}$$

 $= \frac{1}{2^{2/7}}$
 $\log \frac{1}{f} = \log 2^{2.7} = 2.7 \times 0.3 = 0.81$
 $100 \times \log_{10} \left(\frac{1}{f}\right) = 100 \times 0.81 = 81$
Ans. 81

24. Determine volume occupied by 4.75g acetylene gas at 740 mmHg pressure & 50°C temperature R = 0.0826 Latm/mol k (in L)

Ans. (5)

Sol.
$$V = \frac{nRT}{P} = \frac{\left(\frac{4.75}{26}\right) \times 0.0826 \times 323}{\left(\frac{740}{760}\right)} \approx 5L$$

